Novel Approach to the Potential Treatment of Patients with B-Cell Lymphomas Harboring the MYD88 L265P Mutation: Combination Treatment with TLR Antagonist and Rituximab

D. Wang, W. Jiang, T. Sullivan, L. Bhagat | Idera Pharmaceuticals, Inc.

Disclosure: Authors are employees of Idera Pharmaceuticals and hold stock in the company.
MYD88 L265P oncogene over-activates TLR7- and TLR9-mediated signaling pathways that promote B-cell survival and proliferation\(^1\)

MYD88 L265P in DLBCL patients is associated with decreased overall survival, including in those treated with first-line R-CHOP\(^2\)

DLBCL patients harboring only the MYD88 L265P mutation (n=5 of 66 evaluable) did not respond to ibrutinib in Phase 2 clinical trial\(^3\)

\(^1\) Lim et al. AACR 2013 Abstract #2332 | \(^2\) Fernandez-Rodriguez et al. Leukemia 2014, 28:2104-6 | \(^3\) deVos et al, EHA 2013 Abstract #S1180
IMO-8400, a synthetic oligonucleotide-based antagonist of TLRs 7, 8 and 9

• Inhibited TLR signaling and decreased tumor cell viability in B-cell lymphoma cell lines harboring MYD88 L265P mutation

• Tumor growth inhibition in xenograft models correlated with reduced tumor-secreted cytokines and with inhibition of MYD88 L265P-driven signaling pathways including JAK/STAT, NF-κB and p38

• Well tolerated in Phase 1 and Phase 2 clinical trials in healthy volunteers and patients with psoriasis, with no pattern of hematological or other toxicity observed through 12 treatment weeks

• Most common treatment-related adverse events in more than one subject were injection site reactions

• Ongoing Phase 1/2 monotherapy clinical trials in Waldenström’s macroglobulinemia and DLBCL harboring MYD88 L265P mutation

* AACR 2014, Abstract #2570; ASH 2014, Abstract #3101
IMO-8400 and rituximab: potentially complementary mechanisms for treatment of MYD88 L265P-positive B-cell malignancies

IMO-8400 inhibits B-cell survival and proliferation by blocking ligand-induced activation of the TLR/MYD88 pathway specifically in cells harboring L265P

Rituximab, an anti-CD20 monoclonal antibody, induces B-cell destruction by ADCC, CDC and/or apoptosis
IMO-8400 and rituximab in ABC-DLBCL OCI-Ly10 xenograft model

- Groups (n=10 each)
 - PBS, IMO-8400, rituximab, IMO-8400 + rituximab combination
- Treatment initiated on day 9 when tumor nodules reach ~100 mm³
- Terminated when average of tumor volume reached ~1.5 grams
- Analyzed tumor-secreted cytokines in serum
- Collected and saved tumor nodules for further analyses
Antitumor activity of IMO-8400 plus rituximab in OCI-Ly10 ABC-DLBCL xenograft model

Combination vs. IMO-8400: p=0.0003
Combination vs. rituximab: p=0.003
Correlated to the tumor growth inhibition, treatment suppressed OCI-Ly10 secretion of human IL-10

Serum samples collected at day 35 post tumor implantation were analyzed by human 25-plex assay.
A. Representative sections obtained from PBS vehicle control treated OCI-Ly10 xenotransplants showed a monotonous population of very large malignant lymphocytes with prominent nucleoli and occasional mitoses.

B. IMO-8400 treated tumors showed multiple necrotic areas.

C. Rituximab treated tumors showed multiple areas with necrosis and presence of apoptotic neoplastic cells.

D. Treatment with IMO-8400 and rituximab resulted in disappearance of almost all the malignant lymphocytes. The residual tumor nodules were primarily fibrotic cells.
Antitumor activity of IMO-8400 plus rituximab in MWCL-1 Waldenström’s macroglobulinemia xenograft model

NOD-SCID mice (n=8/group) were implanted s.c with 10^7 MWCL-1 on day 0. Treatment was initiated on day 6 when tumor volumes reached 200-300 mm3.

Serum samples collected at day 14 post tumor implantation were analyzed for human IgM by ELISA.

Similar to OCL-Ly10 model, combination treatment resulted in disappearance of most malignant lymphocytes. The residual tumor nodules were primarily fibrotic cells.
Summary: TLR antagonist plus rituximab in xenograft models of B-cell lymphomas with MYD88 L265P

• The oncogenic mutation MYD88 L265P is associated with a poor clinical response to R-CHOP therapy in DLBCL patients
 – Endogenous ligands of TLRs 7, 8, and 9 drive MYD88 L265P oncogenic activity

• IMO-8400, an antagonist of TLRs 7, 8, and 9, plus rituximab has anti-tumor activity in xenograft models with the MYD88 L265P mutation
 – OCI-Ly10 ABC-DLBCL and MWCL-1 Waldenström’s macroglobulinemia

• Idera is currently conducting clinical trials of IMO-8400 monotherapy in patients with Waldenström’s macroglobulinemia or DLBCL with the MYD88 L265P mutation

• Rituximab plus IMO-8400 may offer an alternative for patients with B-cell lymphomas and the MYD88 L265P oncogenic mutation who have not responded to R-CHOP